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Abstract--A new concept of hyperbolic axial dispersion in fluid is introduced. This is an extension of the 
already es'Lablished method of considering axial dispersion which takes the flow maldistribution into 
account in the analysis of heat exchangers. The concept is introduced by analogical treatment of the axial 
dispersion with the fluid conduction. Hyperbolic conduction, which considers a finite conduction wave 
propagation velocity, is important only in special cases such as cryogenic temperatures or sudden incidence 
of high heat flux. On the other hand the similar propagation velocity of the dispersion wave appears to be 
a general phenomenon which affects the thermal performance of heat exchangers even for common 
applications. Based on the proposed theoretical foundation, the dynamic analysis of a U-type plate heat 
exchanger is presented for step and sinusoidal change in one of the inlet temperatures. For this purpose 
the traditional inlet boundary condition for the dispersion model has been extended to incorporate the 
effect of the finite propagation velocity of the dispersion wave. The method of Laplace transforms has been 
applied for the analysis, and the Laplace inversion is carried out numerically using fast Fourier transforms. 
The results indicate that the proposed concept of 'hyperbolic dispersion' can be developed as a powerful 

teol for the analysis of heat exchangers particularly in the transient regime of operation. 

INTRODUCTION 

The steady state and transient behaviour of  heat ex- 
changers have been a constant topic of  investigation 
for the heat-transfer community.  With the many inno- 
vations in computat ional  machinery the challenge of  
predicting the thermal behaviour of  heat exchangers 
accurately and at the same time using simpler model- 
ling concepts has been taken up in different ways by 
different investigators. An important  contribution to 
this area is the method of  introducing an axial dis- 
persion term in the fluid energy equation which takes 
the deviation of  the flow pattern from the plug flow 
model  into consideration. A series of  studies have 
been made in this regard [1-4] which justifies such an 
approach for both steady state and dynamic behav- 
iour of  heat exchangers. The axial dispersion is char- 
acterized by a dispersive P6clet number based on the 
dispersion coefficient 2*. This coefficient can be 
regarded as a virlual thermal conductivity (of heat) in 
the fluid. The difference between dispersion and real 
conduction is that the dispersion coefficient is higher 
in order of  magnitude and it is a flow property rather 
than a fluid property. 

Since the dispersion phenomenon is visualized as 
a virtual conduction in fluid, its behaviour can be 
understood by arLalogical treatment with thermal con- 
duction in fluid. In the absence of  heat sources and 

tDedicated to Prof. Dr.-Ing, Dr.-Ing, E.h. Karl Stephan 
on his 65th birthday. 

with constant thermal conductivity, heat conduction 
is usually described by the parabolic equation 

1 0T 
~3~ = V2T  (1) 

which is valid under the definition of  2 in Fourier  heat 
conduction as 

q = - 2VT. (2) 

Equat ion (2) is empirical in nature which assumes 
an infinite propagation velocity of  the thermal wave 
and is valid only for 'slower'  changes in temperature 
as a good approximation. However,  for special cases 
such as cryogenic temperatures or very fast change of  
temperature because of  the sudden incidence of  a high 
heat flux, equation (1) is to be replaced by the hyper- 
bolic or  so-called 'non-Fourier '  conduction equation 
[5, 6] in the form 

1 a2T 1 8 T  
C ~ 8~ - ~ -  + ~ ~-z -= V2 T. (3) 

This equation presumes the heat conduction law 
proposed by Chester [7] as 

q-i C2 0~ 2VT. (4) 

This equation is not  totally empirical and it stands 
partially on the foundation of  theoretical analysis 
which shows it to be a better approximation for the 
special cases mentioned above. In recent times there 
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NOMENCLATURE 

A effective heat transfer area per plate, m 2 
A coefficient matrix for system of 

differential equations 
Ac free flow area in a channel, m 2 
Ak,,, the element of kth row and mth column 

of matrix A 
b plate width, m 
B diagonal matrix, equation (61) 
C conduction wave propagation 

velocity, m s-] 
C* dispersion wave propagation velocity, 

m s  i 

Cp isobaric specific heat of fluid, 
J kg - l  K - I  

D matrix resulting from boundary 
conditions, equation (67) 

dj elements of matrix D 
f ( Z )  inlet temperature function 
F wetted perimeter of the flow channel, m 
F(s) Laplace transform o f f ( Z )  
F matrix with inlet fluid temperature 

functions, equation (73) 
gij elements of matrix G 
G matrix of eigenvectors of coefficient 

matrix A 
h heat transfer coefficient, W m-2 K -  
/~ enthalpy of the fluid, J kg-  1 
i square root of - 1 
l~ path traversed by fluid particle before 

entering ith channel, m 
L fluid flow length in channels 
mj = j - -  2[j/2], where j is an integer 
n number of channels on one side 
N total number of channels 
Pe axial dispersive P6clet number, 

~L/A¢2* 
Pec effective P6clet number = Pe/(1 - V 2) 

heat flux, W m -2 
0x axial heat flux in fluid, W m -2 
qw wall heat flux, W m -2 
O axial heat flow rate in the fluid, W 
R2 capacity rate ratio in the channels, 

Rc ratio Vz/V 1 
Rg2 capacity rate ratio of the combined 

f l O W ,  l&gz/Wg 1 

Rgu velocity ratio of the combined fluid, 

R N ratio U2/U~ 
Rpe ratio of P6clet numbers in channels, 

Pe2/Pel 
R~ velocity ratio, Uz/U] 
Rw wall heat capacity ratio, W~/Wt 
S transformed time variable in Laplace 

domain 
t temperature obtained by Laplace 

transformation of dimensionless 
temperature ® 

T temperature, K 
T temperature matrix, equation (60) 
u fluid velocity, m s-1 
Ur fluid velocity in the gasket port after 

ith channel, m s-] 
Ug fluid velocity of the combined flow, 

m s  - l  

UI~2~ = (hA/~V)l~2> 
V ratio of the fluid velocity to the 

dispersion wave velocity, u/C* 
W thermal capacity rate of fluid in one 

channel, W K 1 
~g thermal capacity rate of the combined 

fluid, W K 
W heat capacity of fluid(s), J K 
W matrix defined by equation (65) 
Ww heat capacity of wall, J K - l  
x dimensionless space coordinate, X/L 
X space coordinate, m 
Y~, II2.-. Y6 coefficients of equation (40) 
Z dimensionless time Z/Zr]. 

Greek symbols 
thermal diffusivity, m 2 S-1 

~* thermal diffusivity of axial 
dispersion = )~*/pCp, m E s 1 

flj j th eigenvalue of matrix A 
71, 72, 73, 74 coefficients, equations (41)-(44) 
7¢, 7u coefficients, equations (45)-(46) 
F a unit step function 
® dimensionless temperature = 

T-- Tgl,m/ Tg2,~, -- Tgl,in 
2 thermal conductivity, W m-~ K -  
2* axial dispersion coefficient, W m -  ~ K -  
p fluid density, kg m -2 
r time, s 
rr residence time, W/~ 
q~ dimensionless phase lag (cumulative 

value) 
Aq~ dimensionless phase lag (discrete 

value). 

Subscripts 
exit at exit 
g combined flow before splitting in 

channels or after recombination at exit 
i ith channel 
in at inlet 
w plate/wall 
wi ith plate 
0 initial 
1 the fluid in odd channels 
2 the fluid in even channels 
+ the section just behind the heat 

exchanger inlet where dispersion 
begins 

- the section just in front of the heat 
exchanger inlet where the dispersion 
begins. 
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has been a number of investigations [8, 9] dealing with 
this hyperbolic heat conduction problem. 

However, apart from the special cases mentioned 
above, generally in all usual cases of technical interest 
the term ~/C 2 in equation (4) is negligible because of 
the very high propagation velocity C of the thermal 
wave. The case with axial dispersion appears to be 
different in this respect. In dispersion the apparent 
thermal diffusivity due to fluid mixing is of much 
higher order of magnitude than with pure conduction 
or mass diffusion. On the other hand the propagation 
velocity of thermal disturbance caused by real or vir- 
tual axial mixing is much smaller. It may be even of 
the order of the flow velocity under consideration. 
Therefore the infinite propagation velocity of the dis- 
persion wave assumed so far [1~] does not depict the 
real picture of heal: transfer. It can be at best taken as 
the best approximation available so far. 

Recently, an extended axial dispersion model with 
hyperbolic conduction or dispersion has been derived 
and applied to the special case of flow in an adiabatic 
channel [10, 11]. It has been shown that a finite propa- 
gation velocity may have a remarkable effect on the 
outlet response to a step change in inlet temperature. 

In the present work the hyperbolic axial dispersion 
model is further extended and applied to a U-type 
plate heat exchanger as an example. The sudden accel- 
eration in the application and investigation [12, 13] of 
plate heat exchangers in recent times has acted as 
an inspiration to apply the proposed theory to this 
apparatus. The results are worth comparing with the 
recent analyses [14, 15] in order to bring out the sig- 
nificance of tl~e present proposition. 

THE HYPERBOLIC DISPERSION MODEL 

In order to propose the model, first the heat con- 
duction in the stationary fluid inside a pipe of constant 
cross-section has been considered. The fluid inside the 
pipe may be looked upon as a thin rod with axial heat 
conduction (or dispersion) and heat transfer from the 
stationary fluid te the stationary wall of changing 
temperature. For  constant fluid properties the elemen- 
tal energy balance in the fluid yields 

OT Oq~ F 
pep ,~r 0X q- Ac  qw (5) 

where T is the mean temperature in the cross-section 
at location x and time ~. This temperature is the true 
fluid temperature i~" the radial thermal conductivity is 
infinitely large or if the radius of the pipe (rod) shrinks 
to zero. Two heat fluxes appear in equation (5) : the 
conductive or dispersive axial heat flux G and the 
convective radial heat flux (lw at the inner wall surface. 

Differentiating with respect to z and multiplying 
the equation (5) with a/C: and then adding it to the 
equation (5) gives 

or o ( ± O+x) 2 02T+pcp *x+ 
C 2 &2 & &x C 2 & J  

F +Z(0w+  °°+) 0r ]" (6) 

Under the law of hyperbolic conduction proposed 
by Chester as per equation (4), this equation (6) 
reduces to the general one-dimensional hyperbolic 
heat conduction equation with heat transfer from the 
periphery in the form 

C 2102T 10T 02T ~-~c( ~ O q , ~  
& T +  - -  + qw+ 0"C OX 2 C 2 O"c J" 

(7) 

When the fluid rod inside the stationary tube moves 
with a constant velocity of u in the x-direction, we get 
plug flow model with constant free flow area and fluid 
density. Under such conditions the time derivatives of 
equation (7) should be replaced by the substantial 
differential operators 

D 0 0 
Dz - &z +U~x (8a) 

and 

D 2 ~2 02 02 
Dz "2 01:2 + 2u ~ - ~  x +u 2 &x ~ . (8b) 

Substituting equation (8) into equation (7) and using 
the dispersion coefficient 2* and dispersion wave vel- 
ocity C* instead of the thermal conductivity 2 and 
conduction wave velocity C gives 

c,2L772 77j+  
02T F [ DO.] 

=Ox ~ + ~  q w + c ,  2 D z J "  (9) 

The last term of equation (9) can be treated in two 
different ways as described below. 

(i) Regenerator model 
The so-called 'regenerator model' [10] is applicable 

to the case where the fluid receives only one heat flux 
from a unique periphery. Under such conditions the 
heat transfer coefficient, in this model, is defined by 

Dqw 
(7,,+ - h(Tw--T). (10) 

C 2 Dz 

This definition presumes that the peripherial heat flux 
encounters a delay effect similar to that experienced 
by the axial heat flux in fluid described by equation 
(4). This, in principle, is physically meaningful 
because heat transfer in such a case can also be con- 
sidered as heat conduction through the fluid layer 
adjacent to the wall. However, the value of ~/C z in 
such conduction will be smaller than the cor- 
responding value by axial dispersion. Thus when 
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equation (10) is used with a*/C .2 values for axial 
dispersion the delay effect at the wall is overestimated. 

When equation (10) is used in equation (9) a simpler 
form of energy equation for fluid can be obtained. 
The resulting energy equation for the wall, however, 
neglects axial conduction to be reduced to a simpler 
form. Furthermore, the regenerator model cannot be 
used for recuperators because the ratio a*/C .2 of the 
fluid appears in the energy equation of the wall. If this 
value differs for the two fluids, no logical value for 
this parameters can be suggested for the wall equation 
since the wall is wetted by both the fluids. Therefore 
a different and even more realistic approach is resorted 
to for recuperators, which is also applicable to regen- 
erators and thus generally valid for heat exchangers 
[11]. 

(ii) General heat exchanger model 
In this model the usual definition of the heat transfer 

coefficient h is substituted in equation (9) as 

(tw = h ( T w -  T) (11) 

This means that the delay effect at the wall, which 
is much smaller than the dispersion delay effect, has 
been neglected. 

Substituting, equation (11) in energy equation (9) 
under the condition of constant heat transfer 
coefficient results in the hyperbolic energy equation 
for a fluid stream in the channel 

1 F82T 82T 282T -] 1 [ S T  ST] 

8 2T ~ F [- ~*h 
= 8x2 +L2-~Ac  L h ( T w -  T) + C.2 

The summation in the heat transfer term of this equa- 
tion indicates that there can be more than one heat 
flux from the walls (as in the case of plate heat 
exchangers). The same equation with u = 0 and C*, 
~*, 2" and Ac replaced by Cw, ew, 2w and Acw respec- 
tively, can be used as the wall energy equation. The 
conductive propagation velocity could be assumed to 
be infinitely high: Cw = oo. In many practical cases 
the wall longitudinal conduction can be entirely neg- 
lected, consequently the wall equation reduces to the 
well-known form 

8Tw hF 
-- - -  ~ pwcpwAc,w (T--  Tw). (13) 8r 

BOUNDARY CONDITIONS 

In the traditional dispersion model (C* = or) the 
boundary conditions of Danckwert [16] are valid. At 
the inlet to the exchanger a temperature drop 
(T~ -) -T~n +)) is present and at the outlet the tem- 
perature slope is zero 8T/Sx/o.t = 0. However, with 

finite values of C* the inlet condition of Danckwert 
[16] is no longer valid and has to be extended to 
take finite propagation velocity into account. For  the 
following derivation it is assumed that in the flow 
channel carrying fluid to the exchanger no dispersion 
takes place and that the inside surface of this channel 
is adiabatic. 

At the inlet to the exchanger the energy balance 
yields 

O(-)-4--~-~(-) = O!+)+mh! +) (14) i n  - -  I r ~ l t i n  

where ( - )  and ( + )  indicate the positions just in front 
( - )  of the inlet cross-section and just behind ( + )  the 
inlet cross-section Ac of the exchanger. Qi, are the 
conductive or dispersive axial heat flows in the fluid. 
With zero dispersion in front of the inlet Q!,-) = 0 and 

Q[.+) = m(/~n ) - h ! f  )) = rh%(T!ff -) -- T~ +)) (15) 

with Cp as the appropriate mean value between T!. -) 
and T!~ +). Dividing by the cross-sectional area at the 
inlet and the exchanger channel Ac yields 

q(~:) = UpCp(T!n ) - T!+)). (16) x , l n  

Forming the substantial derivative, multiplying by 
~*/C* and adding to equation (16) yields with Ches- 
ter's definition equation (4) 

2" 8T~+) -- upep(T!ff ) -- T! +)) 
8x 

u2* D(T~. -) -- T}~ +)) 
+ (17) 

C .2 Dz 

In the adiabatic channel to the exchanger inlet 

DT!n ) 
- o 0 8 )  

Dz 

and equation (17) turns finally to 

~ (  U2 ~ST~ +) ~* 8T} +) 
T!ff'-T}+'=- . 1 - c - ~ ) ~ - - x  + c *  8~ 

(19) 

This new extended inlet boundary condition becomes 
the well-known Danckwert condition when C* ~ (~. 

The outlet condition remains the same as in the case 
of infinite value of C*. 

APPLICATION TO PLATE HEAT EXCHANGERS 

The hyperbolic modelling concept for fluid axial 
dispersion developed in the preceding sections can be 
applied to a single-pass U-type plate heat exchanger 
to evaluate its transient responses. This will not only 
be an example of the significance of  the present pro- 
position but also an important extension of the analy- 
sis [14] presented earlier. 
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Mathematical formulation 
For mathematical modelling of plate exchangers it 

is essential to resort to some assumptions. The 
assumptions are similar in nature to those in the pre- 
vious study [14] but some simplifications are suggested 
which conform to the reality. These assumptions are 

(1) All thermal properties are independent of tem- 
perature and pressure. 

(2) The flow wdocity and heat transfer coefficient 
are identical within the channels carrying simi- 
lar fluids but they may be different for the two 
fluids. 

(3) The thermal resistances of the plates are neg- 
ligible across the width of the plates but they 
are infinite along the plate length. This means 
that longitudinal conduction in plates is neg- 
lected here and equation (13) is valid. 

(4) Heat transfer takes place only across the plates 
and not through sealing edges or gaskets. 

(5) The heat exchanger is thermally insulated from 
the atmosphere. 

(6) The exchanger is started from the cold state 
(i.e. a uniform temperature). 

(7) The flow is completely mixed in the transverse 
direction within a channel. This gives a uniform 
temperature at each single-channel cross- 
section. 

(8) The flow nmldistribution in flow passages can 
be described by introducing an axial dispersion 
term in the energy equation and this dispersion 
wave propagates with a finite velocity. 

(9) The dispersion and heat transfer in the fluids 
starts at the entry to the channels and not in 
the port carrying fluid to the channels. 

The channel nomenclature selected for the present 
heat exchanger has been shown in Fig. 1. The coor- 
dinate system is chosen in the direction of the cold 
fluid which always remains in the odd channels and the 
even channels carry the fluid where the temperature is 
changed at the erttry. The channels are named from 1 

to N and plates 1 to N +  1. The figure is constructed 
for an odd number of channels, for even number of 
channels the fluid and its flow direction in the last 
channel has to be the opposite of that in this figure. 
With this nomenclature using the 'general heat 
exchangers model' of hyperbolic dispersion equation 
(12), the energy equation for the channel fluids can be 
written in the form 

1 

2o:*hb \ [-8Ti , 1 8T(] 

0 2 Ti hib 
- 8 x  ~ + ~ ( T w , + T w , + ~ - 2 7 " , )  

~*hib, F/STw, dTw,+,'~ 

1 i 1 1'63Twi i OZwi+ l X~q 

(20) 

The simplified energy equation for walls in the absence 
of longitudinal conduction can be written from equa- 
tion (13) as 

(hA)2 W~L 8r~oz - (hA)~2L (T,_, - Tw,) + ~ f f -  (T~ - T,~,) 

Ww 8Tw, (hA)z ( T , _ , -  Tw,)+ (hA), 
L 8z 2L ~ (T~- T.~) 

(22) 

/r~u8 (hA) 1 
- - ~ '  - ( T ,  - Tw1) ( 2 3 )  

L 8~ 2L 

str - -  I ~ l i  

$tr88.~ 
Fig. 1. Channel and plate nomenclature; wl, w2... wN+ 1 indicate the N+ 1 plates and 1, 2,...  N the N 

channels (odd number of channels assumed). 
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Ww aT~+, (hA)N (TN-- (24) 
L c~z 

where (hA)N = (hA), fo roddN 

= (hA)2 for even N. 

These equations can be reduced to the non-dimen- 
sional form using the dimensionless groupings used as 
heat exchanger characteristics such as the number of 
transfer units NTU,  the heat capacity rate ratio R2 
and also the newly introduced parameters such as the 
dispersive P6clet number Pe and the ratio V of the 
fluid to dispersion wave velocity. The set of non- 
dimensional variables chosen is 

W l W 2 
"Crl - -  . ~ ~r2 ~ - -  

W I W 2 

(hA) l (hA)2 
UI - , U2 - 

Wl w2 

N T U ,  = + - -"  
H2 R ? U 2  

~2 Ww U2 
R2 -- . , Rw - , Ru - 

W 1 W I Ul 

k!) l L I~12 2 L Pez 
Pe, - .%2*' Pe2 = A~2*' R~ = Pe~ 

Wi R. u2 V2 
v,- c,*' =7,' Rc=v, 

T -  Tgl,in 
X = X / L ,  Z = "C/Zrl, ® Tgz.in -- Tg,.i,' (25) 

With the help of these dimensionless parameters 
equations (21)-(24) can be reduced to the following 
dimensionless forms : 

V ~ R z m , + , I ~  6"~20i0Z 2 + 2(--Rm,+~l) i - l  ~2®il~x2.] 

+ [Pc, R'~;+, + U 1 V 2 ( R N R 2 )  mi+l] 

× [ !  ao, ~o~q 
LR.-' aZ +(-l)i-l~--xJ 

O2®i Pel U1 ,. 
- + - - ~ -  (R.~RN) '+, [®w, + ®wi+l -- 2®,1 Ox 2 

+ + 

1?®w, + OOwi÷l l 
+(-- I ) ' -  ( ax ax J] (26) 

OO~i UI 
Rw a ~  2 (RNR~)~'(O' l -Owl)  

+ ~(RNR2)m,+ , ( t , - tw , )  (i = 2,3 . . . .  N) (27) 

Rw 0 ~ _  2 8 ® w l  U , ( o l _ O w l )  (28) 

0®wN+, UI 
Rw O ~  2 (RNR2)m?¢+I(ON--OwN+I) (29) 

• J where mj = ) - 2 / ~  ). 

The P~clet numbers appearing in these equations 
indicate values within the channels and not of the 
combined flow before separation in the conduit carry- 
ing the fluid. The different ratios also indicate the 
values in channels given by 

R u = R g  u • 

The boundary conditions to equations (26)-(29) 
can be set considering the 'phase lag effect' introduced 
in a previous analysis [14]. This takes into account 
the fact that the fluid, even though given a unique 
temperature function at the inlet, enters the different 
channels with different phase lags q~. This is due to 
the fact that the fluid particles travel an increasing 
length of path before entering channels 1, 2, 3 . . .  N 
respectively. Consequently the velocity in the conduit 
can also be considered to be changing as per the con- 
tinuity condition, as 

u2,_l _ 1 _ /  ( i=  1 ,2 ,3 . . .n l )  (30) 
Ugl F/l 

U2i~" = 1-- --i ( i=  1,2,3.. .n2).  (31) 
Ugl n2  

From these velocities the phase lag between the chan- 
nels can be calculated as 

A49l -- ll/Vg, Zrl (32) 

m~) 2 = 12/Vg217rl ( 3 3 )  

m~b21+ 1 = (/21+ 1 - -  12i-I  ) /V(21-1)"~r ,  

( i = 1 , 2 , 3 . . . n 1 - 1 )  (34) 

A4~2,-2 = (121+2-123/V2czr, (i = 1 ,2 ,3 . . . n2 -1 ) .  

(35) 

The distances l, are defined by Fig. 1. The total 
phase lag at the entry of each channel can now be 
calculated as 

2i 1 
~bz,_~ = ~ A~bzj_, ( i=  1 ,2 ,3 . . .n , )  (36) 

j = l  

2i 
~b2i = ~ A¢zj (i = 1,2,3.. .n2). (37) 

j = l  

This phase lag effect is multiplied in a U-type plate 
exchanger where the fluid undergoes an identical 
phase lag at the exit as well, this is given by 

~bi.~xit = ~b~. (38) 
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The boundary conditions as discussed with equa- 
tions (14) to (19) can be written in dimensionless form 
with the newly de, fined apparent P6clet number as 

Pec = Pe/(1 - V2). (39) 

The boundary conditions reduce to : 

a t x  = 0 

1 c~Oi V 2 c~Oi 
Oi ~- -- f l  ( Z - -  flpi)F(Z - flfli) 

Pecl Ox Pe~ c~Z 

a t x =  1 

(40) 

Ox = 0  i = 2,4,6 . . . .  2 (41) 

1 OOi V~ OO~ 
O~ + V f2 ( Z -  O 3 F ( Z -  ~b,) 

Pec2 Ox Pe2R~ OZ 

O-~-=0 i = 1 , 3 , 5  . . . .  2 - 1 .  (43) 

Solution for temperature response. The partial 
differential equations (26)-(29) along with the bound- 
ary conditions given by equations (40)-(43) can be 
solved by the mel:hod of Laplace transforms. For this, 
as per assumption (6) of the previous section, the 
initial conditions of fluid and wall are set to zero, 

Oi. 0 = Owi,0 = 0. 

Taking the Laplace transform of the wall equations 
(27)-(29) we get 

(U1/2)(RNR2)"%_, + (U1/2)(RNR2) m,+' b 
twi = 

Srw + (U1/2) (RNRz)"' + (U1/2) (RNR2)m'+' 

( i = 2 , 3  . . . .  N) (44) 

(U1/2)q 
twi -- (45) 

SRw + U1/2 

(U1/2) ( R N R  2) mN+l t u 

twu+l = RwS+ (U1/2)(RuR2) "N+, " (46) 

Now, the Laplace transform of the channel equa- 
tion (26) can be taken and in it the value of tw,, 
t~2.., twN+l can be substituted from equations (44)- 
(46). Thus a system of ordinary differential equations 
is obtained in the form 

dt~ 
d2ti 1 Ytt i+ Y2ti-l + Y3ti+~ + Y4 dx 
dx  2 1 --7c 

dti_ 1 d t i +  1 -] 
+ Y s ~ + Y 6  dx ~.j i =  1,2,3 . . . . .  N (47) 

where 

U ,  
Rj = ~ -  (RNR2)~ 

Ri 
71 - SRw+ Ri+ Ri+I 

= 0  i = 1  

i = 2 , 3  . . . .  , N  

(48) 

Ri+ 1 

72 -- S R  w + a i +  a i  + 1 
i =  2 , 3 , . . . , N  

Ri+ i 
i = 1  

SRw + Ri+ 1 

Ri+ 1 

73 - SRw + Ri+ I + Ri+ 2 
i = 1,2 . . . . .  N--1 

RN+ 1 
i = N  

RwS+ RN+ I 

Ri+ 2 

]24 - S R w  + Ri+ I -k- Ri+ 2 
i =  1,2 . . . . .  N 

= 0  i = N  

(49) 

(50) 

(51) 

7c = V~R~ m'+l (52) 

?u = -~- R~¢÷, (53) 

]20 = P e lR ~+~  (54) 

7,, = Rum,+, (55) 

YI = ?cS~ S(?p + 27u7c) 
3 )2 -[- 7V -- 7pTu(72 -~ 73) 

7 UTC S (72 + ])3 ) -[- 27p?U (56) 
7v 

7u7c71S 
112 = --7o7u71 (57) 

7v 

7u7c74S 
Y3 = --TpTU?4 (58) 

7v 

74 = ( - 1 ) ' - '  + (7p+27.7c) 
L ~v 

- (]22 + 73)7u]2c I (59) 

Ys = -- (-- 1) i- 112U]2C]21 (60) 

Y6 = --  ( - -  1 ) i - l ?uTcT , .  (61) 

Likewise the boundary conditions given by equa- 
tion (40)-(43) can also be transformed to : 

a t x  = 0 

V~ ) l dti 
1 + ~ S t i -  Pecl dx - F1 (S) e -•,s 

[/_-,  3 . . . . .  (62) 
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d ~ = 0  i = 2,4,6 . . . .  2 ~- (63) 

a t x  = 1 

V~S'~ 1 d t i _F2(S )  e ~,s 1 + ~ ) t i  + 
Pec2 dx 

. . . . .  

dt~ [ i  = 1, d -0 . . . .  

The system of transformed equations (47) can now 
be written in the matrix format as 

dT 
- -  = A T  ( 6 6 )  
dx 

where the vector T is given by 

T = ( T  1 T2, , TN, dT, dT2 dT~v~ v 
. . . .  dx, d n , " "  d x J "  (67) 

The matrix A is the coefficient matrix of the set of 
ordinary differential equations (47) which can be con- 
veniently expressed in terms of YI, Y2 . . . .  Y6 and Yo 

The matrix equation (66) can be solved by eva- 
luating eigenvalues flj and eigenvectors [gj] of the 
coefficient matrix A. This boundary value problem 
has the solution in the form 

T = GB(x)D (68) 

where the diagonal matrix B(x) is given by 

B(x) = diag {e ~,~, e p~ . . . . .  ea~,'~}. (69) 

The columns of matrix G are the eigenvectors of 
matrix A, and D is a coefficient vector which can be 
evaluated from the boundary conditions. Thus the 
fluid temperature can be expressed as 

2N 

Ti = ~ ~goe ~ (70) 
/ - 1  

the derivatives of the temperatures can be expressed 
a s  

~ =j~_ ldJffN+~de#jX. (71) 

Equations (70) and (71) can be applied to the 
boundary conditions (62) to (65) which gives 

WO = V. (72) 

The vector F contains the input functions to the chan- 
nels and the matrix W results from boundary con- 
ditions (62)-(65) 

F = [Fl (S) e -4,,s, F2(S) e -~s ,  F1 (S) e -e~s, 

F2(S) e -~',s . . . .  Fx(S) e -~'~, 0, 0.. .]T (73) 

where K -  1 fo rNodd  

= 2 for Neven. 

Hence from the boundary conditions the coefficient 
matrix D can be obtained as 

D = W -  1F. (74) 

Thus the solution is obtained in the Laplace domain 
which is again to be reverted back to the time domain 
by Laplace inversion. Obviously the only way to do it 
is by numerical inversion. In the present analysis a 
Fourier series approximation method is used for 
Laplace inversion which is applicable both to step and 
sinusoidal responses [17]. The method is accelerated 
by fast Fourier transformation to evaluate the 
response at the nth time step for a function H (S) to 
the time domain in the form H (Z,). 

H(Z,)  exp (aZ,) [ ~ ; I H  f ik~,  
- ~ Re ~ ta+ ~) 

• 2~znk i 

1 
The constant a lies in the domain 4 < aZ < 5 for 

minimization of truncation error• 
The response is obtained by this numerical inver- 

sion for each channel, keeping in mind the phase lag 
at the exit port. The summation is performed to give 
the combined fluid temperature at the outlet of the 
heat exchanger, thus 

l nt 

Tg~,out(Z) ='Z-eZ~nl-- T~,2i-,(Z-dP2i ,) (76) 

z~2,ou<(Z) = ± ~ T2,2,(z-o2,). 
/72 i 7 1  

(77) 

RESULTS AND DISCUSSION 

With the help of the analysis presented in the pre- 
ceding sections the temperature response due to any 
type of temperature transient at one or both of the 
inlets can be obtained. The two types of temperature 
transients that are mostly of practical importance, 
namely, the step and sinusodial change, have been 
presented here as examples. In these examples the 
realistic values for heat exchanger parameters such as 
NTU and Rg2 have been chosen and they have been 
kept constant in all the examples since the primary 
objective of the paper is to investigate the effect of 
the dispersion characteristic Pe along with its finite 
propagation velocity C*. The plate spacing is chosen 
to be 4% of the effective flow length within channels 
and the diameters of the circular ports from which the 
channels are fed and at which the flow reassembles at 
outlet are chosen in such a way that the P~le t  number 
remains the same in all the channels. However, the 
method can also be applied where the two sides have 
different P~clet numbers. 
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Fig. 2. Effect of finite dispersion wave velocity, at constant 
P~clet number Pe = 5.0 on the exit response of a plate heat 
exchanger due to a step change of temperature at the inlet of 
the fluid in side 2. (a) Response of fluid 1. (b) Response of 

fluid 2. 

0.5 

0.4 

0.3 

0.2 

0.1 

O.C 
0 

0"6 i 

0"51 0.4. 
~ 0.3- 

. 

0.2- 

0 . 1 . .  

0 . ~ "  

0 

Pe, = 5.0 

i I , , i • . 

2 4 6 8 
Z 

, , , i , . . i . . . i , . i . . 

L 
0 . 5  

/ ' ~  = 0.9 0'5 Pe. = 5.0 

' ' • i , , , i , • i i • 

2 4 6 8 
Z 

1 0  

1 0  

Fig. 3. Effect of finite dispersion wave velocity, at constant 
effective P6clet number Pec = 5.0 on the exit response of a 
plate heat exchanger due to a step change of temperature at 
the inlet of the fluid in side 2. (a) Response of fluid 1. (b) 

Response of fluid 2. 

With the chosen parameter values N =  15, 
Rw = 0.4, R~ = 1.0, Rg2 = 1.0, RN = 1.0, NTUI = 1.0 
and Pe = 5.0 the step responses have been calculated 
for different values of  the ratio V of the fluid and 
dispersion wave velocity. This depicts the effect of  
hyperbolic dispersion on the step response. Obviously 
V = 0 corresponds to the traditional parabolic dis- 
persion. The results are presented in Fig. 2. It is 
observed that for a given P6clet number Pe, the steady- 
state temperature at the outlet of  the cold fluid 
increases and that of  the hot  fluid decreases with the 
increase of  V. This implies that the dispersion wave 
velocity changes the dispersion effect even for a given 
P6clet number. The higher the ratio V of  the fluid to 
the dispersion wave velocity the lower is the dispersion 
effect. Theoretically as V ~ 1 the steady-state response 
approaches the plug flow model  which is also shown 
in the figure. F r o m  the steady-state temperatures it 
can be concluded that the decrease of  dispersion wave 
velocity C* increases the heat exchanger effectiveness 
by decreasing the dispersion effect and when the dis- 
persion wave propagates at the same velocity as the 
fluid the dispersion effect disappears in the steady state 
and the heat exchanger behaves as if  a plug flow is 
taking place. 

To explain the effect of  dispersion wave propa- 

gation another approach can be taken in congruence 
with the observation [10] that at steady state the effec- 
tive dispersion coefficient can be taken as 2"(1 - II2). 
Thus the effective P6clet number can be defined as 

Pe 
Pec = 

1 - F 2 " 

In fact in Fig. 2 the difference of  the effectiveness is 
primarily due to the difference in the effective P6clet 
number. To demonstrate this the step responses for 
constant effective P6clet number Pec are plotted in 
Fig. 3. It is observed that at steady state the effective 
P6clet number approximately depicts the dispersion 
effect uniquely since the curves approach each other 
though the difference remains. However,  it is inter- 
esting to observe that the responses in the transient 
regime depend on the individual values of  II, and the 
effective P6clet number alone does not  represent the 
true dispersion effect. This difference is reflected as the 
difference in the slopes of  the curves in Fig. 3. 

At  this point it can be mentioned that while veri- 
fying the dispersion effect with experimentation on 
shell and tube heat exchangers, it was observed that 
the slope of  the experimental dynamic response differs 
from that calculated with the P6clet number which 
gives the same steady-state temperature [2]. The pre- 
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Fig. 4. Effect of finite dispersion wave velocity, at constant 
Prclet number Pe = 5.0 on the exit response of a plate heat 
exchanger due to a sinusoidal variation of the inlet tem- 
perature of side 2. (a) Response of fluid 1. (b) Response of 

fluid 2. 
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Fig. 5. Effect of finite dispersion wave velocity, at constant 
effective Prclet number Pec = 5.0 on the exit response of a 
plate heat exchanger due to a sinusoidal variation of the inlet 
temperature of side 2. (a) Response of fluid 1. (b) Response 

of fluid 2. 

sent theory appears to be a good explanation for such 
behaviours when applied to the respective cases. 

The marginal difference in the steady-state response 
for constant effective Prclet number Pec and different 
dispersion wave velocity, as observed in Fig. 3, can be 
attributed to the last term of equation (12) where the 
dispersion properties appear in explicit form. 

The response due to sinusoidal oscillation in one 
of  the inlet temperatures brings out  some interesting 
features because it is a strongly transient phenom- 
enon. Figure 4 shows such a response for the same set 
of  values of  the constants as used for the step response 
previously. The hot-side inlet temperature is taken as 
a pure sine wave of  the form 

T2.m(Z) = sin Z. (78) 

For  a constant P6clet number Pe it is observed that 
the amplitude of  the cold-side outlet temperature 
increases with the increase of  V. The case with the 
hot-side outlet temperature is just the reverse although 
the effect of  V here is not  as predominant  as in the 
case of  cold fluid. These characteristics as presented 
in Fig. 4, reconfirm the fact that the dispersion wave 
velocity controls the effect of  dispersion and the lower 
the value of  the velocity C* the lower is the effect of  
axial dispersion of  the fluid. It is also worth noting 
that the phase shift of  the waves decreases for the cold 

fluid with increasing value of  V, while in the case of  
the hot  fluid it increases. One interesting feature is 
noted in the responses where it is found that in each 
half  cycle the responses of  both the hot  and cold sides 
intersect at a common point for a given value of  Pe 
and different values of  V. Figure 5 depicts the sinu- 
soidal response for a given effective Prclet number Pec 
and different ratios of  the fluid to dispersion wave 
velocity V. It is found that the approach of  using the 
effective Prclet number does not  bring out any distinct 
advantage here since the process is totally transient in 
this case. It is observed that both the hot- and cold- 
side responses depend strongly on the dispersion wave 
velocity in respect of  amplitude and phase shift. 

Finally, responses are computed by doubling the 
frequency of  the inlet temperature sinusoid with the 
same set of  constants as in the previous case. The 
results are presented in Fig. 6. It is found that for a 
given P6clet number Pe, the difference in amplitude is 
higher for various values of  V than for lower fre- 
quency for both hot- and cold-side temperatures. This 
is because at higher frequency the heat exchanger 
encounters stronger temperature transients and the 
greater the transient behaviour the more is the effect 
of  dispersion wave velocity. The absolute value of  
phase shift is found to be of  the same order at higher 
frequency but since the period is one half  in this case 
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Fig. 6. Effect of  dispersion wave velocity, at constant  P6clet 
number Pe = 5.0 on the exit response of a plate heat 
exchanger due to a higher frequency sinusoidal variation of 
the inlet temperatu:re of side 2. (a) Response of fluid 1. (b) 

Response of fluid 2. 

so the relative phase shift is almost doubled. Finally 
it is observed once again that even at higher frequency 
all the curves intersect at a common point during each 
half period of the cycles. 

Since the thrusl: of the present analysis is to observe 
the effect of dispersion wave velocity, the effects of 
other parameters such as N T U  or R2 have not been 
computed here. They, however, show the expected 
characteristic. 

SUMM/ItRY AND CONCLUSIONS 

A new concept of hyperbolic dispersion is intro- 
duced in the pre~;ent paper. Based on the theory of 
hyperbolic (or the so-called 'non-Fourier') con- 
duction the basic: equations for conduction of heat 
during fluid flow have been derived. Then, by analogy 
with conduction, the concept of hyperbolic dispersion 
has been broughl: to light. This concept is based on 
the premise that the axial dispersion in fluid, which 
has been used in previous work as a phenomenon that 
describes the deviation from ideal plug flow, propa- 
gates with a finite wave velocity rather than the instan- 
taneous propagation assumed earlier. It is further 
observed that for axial dispersion in fluid with a wall 
heat flux, a delay can also be assumed in the wall heat 
flux and this model can be termed as a 'regenerator 

model' [10]. However, due to mathematical difficulties 
it is difficult to introduce such a delay term for recuper- 
ators where the wall is wetted by two fluids simul- 
taneously. In this case the normal convection equation 
can be used and the model can be termed as a 'general 
heat exchanger model' [11]. Salient features of these 
two models are also discussed in the text. 

An extended form of the Danckwert [16] boundary 
condition at an inlet is proposed for the present model 
which arises from the energy balance at the heat 
exchanger inlet cross-section, taking the finite dis- 
persion wave velocity into consideration. 

Using the 'general heat exchanger model', a U-type 
plate heat exchanger is modelled for transient 
response. In the present model longitudinal con- 
duction through the plates is neglected. With a dis- 
persive P6clet number depicting the axial dispersion 
in the fluid and dispersion wave velocity depicting the 
propagation of this dispersion, the model is for- 
mulated in the form of a set of partial differential 
equations in time and space coordinates. This set of 
equations is solved by the method of Laplace trans- 
forms and is then inverted back to the real time 
domain by the numerical inversion of the Laplace 
transform using fast Fourier transforms (FFT). 

It is found that the dispersion wave velocity plays a 
significant role particularly in the transient regime. 
The slopes and the steady-state values of the tem- 
perature response depend on this wave velocity. It is 
found that, even though in the steady state the normal 
dispersion method with a corrected effective P6clet 
number (infinite dispersion wave velocity) can be used 
as a rough approximation, it fails severely in the tran- 
sient domain of the response. Strong effect of dis- 
persion wave velocity has also been observed for oscil- 
latory responses. In this case also the decrease of 
dispersion wave velocity decreases in the axial dis- 
persion phenomenon of the fluid. The use of effective 
P6clet number does not appear to be meaningful in 
such strongly transient cases. Finally it is observed 
that at higher frequency the dispersion wave velocity 
plays an even bigger role in respect of the amplitude 
and phase shift of the response caused by an increased 
transient nature with the increase of frequency. The 
results clearly indicate the utility of using the proposed 
method for heat exchanger analysis for which this 
paper may act as an introduction. However, the fol- 
lowing further investigations are suggested to develop 
it as a fully fledged instrument for heat exchanger 
analysis : 

(1) Based on the analysis presented earlier [10, 11] 
and here, transient test techniques should be 
devised for the determination of dispersive 
P6clet number and dispersion wave velocity for 
different flow conditions. 

(2) Transient experiments on heat exchangers 
should be performed on different types of heat 
exchangers and the responses are to be analysed 
by the present analysis. 
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(3) The ' regenera tor  model '  can be used to analyse 
the storage-type heat  exchangers.  

(4) Detai led numerical  calculat ions based on  actual  
flow pa t te rns  should be carr ied out  to assess the 
goodness of  the analysis presented here. 
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